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I. INTRODUCTION

A, Stetement and Scope of Problem

The objective of this thesis is to present an iteretive method for the
solution of resonant cavity end wave guide problems involving boundaries of
srbitrary shape. In the ensuing process of solving for the field configu-
ration the eigenvalue associsted with the particular mode of interest is
also found., In both the cavity and wave guide cases the problems will be
idesliged by considering the dielectric material to be homogeneous and
losgless and the surrounding metallic wells es having infinite conductivity.
Also, only ¢losed bounding surfaces will be considered in the cavity
‘problem.

The resonent cavity and wave guide problems are considered together
because of the similerity of the boundary value problems involved in both
cases. The wave guide problem reduces to one of solving the scalar wave
equation in two dimensions subject to certain boundary conditions, In the
case of the resonant cavity the vector wave squation must be solved with
its associsted boundary conditions.

The iterative process to be used is essentially an extension of
Picard's method of successive approximations., One starts by assuming s
function which satisfies the boundary conditions of the problem and then
uses it along with the differential equation to obtain a second function

which will be closer to the desired solution than the original one. The
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aeeond one is then used to obtein a third and so forth until a sclution
within the desired accursey is obtained. With sach iteration one also ob-
taing an approximate vmiue for the eigenvalue associsted with the solution.
This approximestion also improver with each step.

Although the idea of applying the method of successive approximations
to boundary-value type problems is not new, the particular technique used
here, which involvez simultaneocus successive approximetions for beoth the

eigenfunction and eigenvalue of the problem, is believed to be novel.
B. Review of Literature

The szubjeet of wave guides and cavities is of course a clessical one
and literature concerning it is quite extensive, Nearly every text dealing
with electromagnetic waves considers these problems to some extent or other.
The usual procedure is to solve a few cases involving simple geometry and
let it po at that. There ere however some notaeble exceptiona.

One of these is Slater's "Microwave Electronics™ (12) in which the
author spproaches the subject from quite a general viewpoint, This is
probably the most comprehensive treatment of the general theory of resonant
cavities available in the form of a text. However, in spite of the general
approsach, there is ne hint given as to how one might go about obtaining a
numerical answer to & problem invelving anything other than the stendard
elementary geometric configurations,

Stratton's "Hlectromagnetic Theory" (13) is also a famous text in this

field and contains quite a bit of general thsory regarding the problem.



Here again, though, there is no sugrestion as to how to go sbout obtainiung
numerical answers to the genersl problem.

While mentioning books on this subject onme would hardly dare overlook
the Rediation Leborstory feries. Particularly pertinent to thiz subject
are Vol, 10, Marcuvitz's "Weve Guide Handbook" (5) and Vol. B, Montgomery's
"Principles of Microwave Circuits™ (6). In addition to this series of
books there are numerous other Redistion leboratory publicatione which are
available to a limited extent. Two of these were particularly helpful,

One was the two volume edition of "Notes on Hicrowaves" by Hansen (2) in
which the cavity and wave gulide problems are treated rather thoroughly.
Also, & lucid treatment of the Ritz method as applied to these pron;ems is
given here. The other wes Report 43-34, "The Theory of Obstacles iq Kego~
nant Cavities end Wave (Guides” by Schwinger (11). . This was the source of
the idea of using & dyadic for e Green's function in the solution of the

~ vector wave equation,

In addition to the above cited references which are of general inter-
est, there are others of interest only with regard to certain phases of the
problem. These will be referred to in the body of the thesis as the need

arises.



II. MATHEMATICAL BACKGROUND
A, The Green's Function

The Green's function is useful in much of the following work, so a few
paragraphs will be devoted to the subject at this point., This subject is
discussed in detail in such standard differential equations texts as Ince
{3) or Coddington end Levinson (1), and they may be referrsd to for e more
thorough treatment of the subject. A little more restricted viewpoint, but
perhaps more fitting for the problem at hand, will be given here.

Let G (X, €)denote the Green's function for the differential system
L 4L =0 a<x < b
U = o

(&

(1)

where | is sn nth order linear differential operator, H_ is & function
of X end UL represents the boundary condition equations involving linear
ecombinations of ‘j» end its n-l derivatives evaluated at x=a and x= 4 .
This is the same notation used in the above cited references.

Next consider the similar but nonhomogeneous differential system
L 27‘ = F(x)
U, = o
C

where ) (x) ig arbitrary within the interval from & to & . One of the

(2)

very useful properties of the Green's funotion for (1) is that it enesbles

one to write the solution to the corresponding nonhomogeneous problem (2)



immedistely as

b
(&(m = qu, g) regy A€ )
@
As & matter of feact onme might take the rather restricted viewpoint of using
(3) 28 & means of defining the Green's funetion. 7This approach is useful
in daterminmg some of the essential properties of this function.
With this in mind let L operste on both sides of (3) and note that

| operates with respect to x mnd not € . This along with (2) leads to

b
Lyw = JILG%&:;} regy de = rew (¢)

@
I, for arbitrary ["(x), the above integrel is to yleld ¢ (1), then it ecen

be seen that [ (G (X, &) must be & Dirac delta function, i.e.

LEeg) = S(x-%) (5)

Thus & (as a function of X ) muet satisfy the homogeneous differential
equation (1) at every point within the intervel except where X = 8 . At
this point there must be an upward jump of unity in the nel derivative of
G if LG 48 to be & delta function at x=§ .

Also, if % is to satisfy the boundery conditions as specified by
U= 0, then (5(X, @) must also. This can be verified by substituting
the expression for ‘g of (3) into the boundary condition equations and
noting that I '(S) factors out of each term within the imtegral leaving the
U,; expression with G in the role of a . Thus, since the boundary con-

dition expressions are homogeneous, G must satisfy them just as 3\ does,



Thus, in summary it can be ssaid that a Green's function must have the
following properties:
1. G& <) as a function of X must satisfy the homogensous
differential equetion ((G = 0 except at x= €,
2. At x= 5 , the n-l derivative of G & $)must have an
upward jump of unity if [ & 18 to be a delta functionm.
8. G £)must satisfy the same boundary conditions as
imposed on B‘ .
If the mbove are true, then the solution of the nonhomogeneous problem (2)

con be written by inspection as in (3).
B. Piocard's Method of Successive Approximations

As mentioned previocusly the approach to the wave guide and cavity
probleme is essentially one of extending Picard's method of successive
approximetions to apply to these problems. So & brief resume of the method
will be given. As in the case of the Green's function, e more detailed
discussion will be found in Ince (3).

Perhaps the best way of introduecing the method would be by means of

an example, Consider the differential equation

A
;}; = oy ()

with the boundary condition

g =6 (7)



How successive approximetions are formed by first assuming any arbitrary
curve through the point (&, ) and denoting it Ef°(x) . Then with 30
substituted into the right side of (8), the egquation may be integrated
yielding & new function which will also go through the point (<, 4)if the
constant of integration is chosen properly. Let this function be denotsd
by %,cm « The process can then be repeated using La, rather than l<9° in
the right side of (6) end a gl obtained, and so forth, leading to the
recursion expression

4—;?‘ = fo, 4. @)

(Jm@v) = b. (9)

It is known that this process will converge to the appropriate so-
Jution providing f— «, 3) is sufficiently well behaved. Note that the
method involves no guess work beyond choosing the initial \d,o , and no
matter how much this may differ from the correet solution, the process
converges, with each integration leading to a function which is a little
closer to the desired result then the previous one.

Higher order differential equations cen be handled by writing only
the highest order term on the left side of the equation and all others on
the right. From here on the process is essentiaslly the same as in the
first order case just desecribed.

The treatment of two-point boundary-value type problems by thie
method is somewhat more complicated and is discussed in some detaill by

Picard (9) and alsc to a lesser extent by Ince (3). As the technique to



be used here differs considerably from theat of the refsrences cited, there

is no need to elaborate at this point.

C. Appliecation to the Sturm~Licuville Problem

Before going to the wave equation problems at hand, some insight into
the more complex problem can be gained by firet considering the corre-

#ppndiug; wave equation problem in one dimension, This would be the differ-
ential system

+ élg - © (10)

2.
- where € is the parameter of the system. This is just & special case of

& more general type of system known as the Sturm~Liouville syatem,

When
written in normel form® the general equation is

L -

\—g/drl +[A~ Z/UO](} =0 , aZxZ b (1)

U.:O

2

where ) is a parameter of the system, In discussing some of the gener-

alities to follow it is just as easy to deal with the genersl case (11) as

the special one of (10), so this will be done,

%3ee Ince (3) p. 270 for the transformation leading to this form for
the differential equation.



Generally epeaking, soclutions of (11) which will satisfy the boundary
conditions exist only for discrete values of }\ « These values are called
the eigenvalues of the problem and corresponding solutiona the eigen-
functions of the problem. A great deal of mathematical theory has been
built up about such functions, and their properties are well known. Again
such standard texts as Ince (3) or Coddington and Levinson (1) may be
referred to for a detailed treatment of the subject.

In order to apply the method of successive approximations to this
problem let (11) be written in the form

ok
U

¢

H

-/ ﬂ (12)

where the operator [ has been introduced as & matter of convenience and

is defined as

OC,L
L= Jge ~ F . (13)

Also, let (> (% §) denote the Green's function for the system

The basic idea of the method is the same as before, An initial k&o is
chosen which satisfies the boundery conditions. Then it is substituted
into the right side of (12) and another function is generated by (12) which

will be denoted 51' . Hote that superscripts are being used rather them
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subscripts as before, This should serve to avoid some confusion with sube
seripts later on, and where quantities are to be raised to a power they
will be enclosed in brackets.

There is e slight difficulty thet ariees at this point, however, The
paremeter )} is not known and thus \d.' cennot be found from (12) until A
is specified, As it will be convenient throughout the iteration process
to deal with normaliszed functions, each time the differential equation (12)
is integrated to obtain e now approximation, ,\ will be chosen such as to
normalize the new function., Thus & different value of 2\ will be associe
eted with esmch successive spproximetion and these will be denoted with a
superscript also. It is this feature of the method which differs from
that given in Picard (9) snd Ince (3). Thus the suocessive approximations

are generated as follows:
[ &/' = —%'g
L o¢* ==X
§ =

(-]

/

’ (18)

AR

2.

where A . A

‘jl'ﬂél‘

The convergence of sich an iterative process will be investigated

/
s **° are chosen such a8 to normalize the resulting ﬁ ’

next. It will be shown thet as 2 tends to infinity, y"approachas a
solution of (12), and at the same time ).ﬂ approaches the corresponding

eigenvalue of the problem.
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Consider the first step of the iteretive process - thet of obtaining

4&,' « PFrom (15) (a' oan be written explicitly as

b
> = =) j@u, $) 4°Cs) L& (26)

!
where )1 is chosen such as to make g'(x) normalized, i,e.

j [‘}'(x)] LJ)A =/ . a7)

The initinl function ‘610 g also normaliged of course. Now in order to
o
find out something about the nature of *a' . let “-71 (§) and G (% §) in

(18) be expanded by means of & generaligzed Fourier series as follows:

(30(2) = a,B( + aQPS)+ - P (D + - 19)

Gs)= §WEE) + LWL+ 4@ Gt
(19)

where ct? s ﬁ s e g% are the eigenfunctions associated with the

problem, and the coefficiente d//z and g k«) are given by

b

a, = f(ac%u %, 5) L& (20)
b

PN =j(7<x, g P, (5)LE . (21)

Then substituting (18) end (19) into (16) and taking advantage of the

orthonormal properties of the eigenfunctions 92 » one obtains for g‘m)
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(Ef'cx) s [ e A L gy

But 9, ") can be obteined in terms of <, () by remembering that

is a solution of the differential squation

L, =~ R/ed’b/e (23)

where A k denotes the eigenvelue associated with <ﬁz + Thus with the

gid of the Green's function the solution <ﬁk can be written as
(A
C@Cx\’) = -Akfé(x,g) qé/e(g-’) Lg | (24)
O

Compering (21) and (24) it can be seen that

i n
@6y = - ) (25)
te ™
end thus *alaan be written as
‘ b o & (x)
g'(x):—a[al(_7,)+az‘“ﬁl)‘f’"' }

-

:2—-‘ [“, f o+ a’L(%‘l)‘&(X)‘f""az (—;'—;)qiu)-r--'] .

(28)

Now if one compares the expanded expression for 7' (26) with that for
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1{ (18), the effect of the iteration process cen be seen. In going from

(JO to E{I' the values of the higher order “"harmonics™ have each been re-

duced by a fector of —7;}"6 with respect to the "fundamental.," Here the

terms harmonic and fundamental are used in the same generalized sense es
the term Fourier series. As the eigenvalues have been arranged in as~
cending order, this ratio is always less then unity. The equations re-
lating ‘(’}L to ’at' s and tés to 3‘ and so forth are similar to those re«
lating ta’ snd ((/71" s 80 it can be said that the higher harmonics are

reduced with reepsct to the fundamental by a factor of %’ with each step
k

in the process. Clearly then, in the limit only the fundamentel will re-
main, Or, if the fundamental is not present in 1?0, the process will
converge to the lowest order term which is present.

Wext consider the limiting value of ) , the factor used to normalize
each of the successive approximations. Assume for purposes of illustration
that all of the terms of the expansion of 'J “are zero up to the <. term.
That is, the < th term is the lowest one present. Then for large ¢

(27)

“n

AR

But L(;(Mean also be written in terms of (a,m ’by meens of the recursion

formula

b
«&’”: - A”‘f(;czr,sj g[""(g) LE

(28)

6
~ _)”‘]G(r,s)cgcéjoff
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Row from (24)

¢

b
[
/G(&%)%cgj Ly = F - (29)

Therefore, combining (27), (28) mnd (29) yields

& = A5 )

[

or

M

N )a . (30)

Thus it is seen that the normalizing factor tends toweards the eigenvalue
corresponding to the particular eigenfunction obtained by iteration.

It is also of interest to note that AM approaches P\é monotoni«
cally from above. For the sake of simplieity this will be demonstrated
for the case of ﬂ , + A more general proof could follow along similar

lines. Let ‘am " and F“bo written in expended form as follows:

M-

= bF + bt + - (s1)
(4
aﬁ” = _)\”"feu,g)dvz""c's) L

= )\[-«494-;:%_,_ ] (52)

- n
Next, the normaliged values of 3 " and ; may be written

b
f[&m-lex = é,z+ é;+ - (33)
a
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b
my % T b & 2
(L4777 = [XT L) (o) o] e
a
and then recalling thet the normslized values of both ‘ffm

’ ~
snd ‘a, must

be unity, the sbove expressions mey be set equal with the result

[)\M] _ b,z*f— éj + é; +~ - (36)
N B (G k) e (B k)

This ratio is always grester than unity because /) p < 2\ N < 7\ 7T .
Thus the approximate velue for the eigenvelue is always larger than the
correct value. Also, sas the higher harmonies ( [,L, 55, e+ ) decrease
a8 72 becomes larger, it can be seen that this ratio approaches unity
getting closer with each iterative step.

It has thus been shown that any of the eigenfunctions and corre-
sponding eigenvalues for the general SturmeLiouville problem cen be ob-
tained by this method. One sterts by sssuming an initial %0 satisfying
the boundary conditions and then uses this te obtein e fy’ , and the «at’
to obtain a ?Z s and so forth until the desired accuracy is obteined.
Hormally, if (éohas been chosen in an arbitrary meanner, one would expect
the fundsmental end all harmonie terms to be present in the expansionm.
Thiz being the case the process would converge to the fundamental eigen-
funection % +» Once this has been deVermined the fundamentel component
of 404 “ can be gubtracted out of ‘# °and a new initisl function obtained

whioh contsins no fundemental., 7This can then be used teo find ¢z » and
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the process repeated to find # s and so forth., The megnitude of the

3
fundemental term present in ‘610 can be obtained from the usual expression

for the coefficients of a Fourler series, i.s.
b

CL/ :ftao(x)éﬁ,(x) J)‘ i (36)

&

A similar expression may be written for the other components.

Before going on to an example something might be said about the rate
at which this process converges. Nothing of a general nature hes been
developed on this point. However, some feel for the rate of convergence
may be had by observing the factor by which each of the higher order terms
is reduced relative to the fundamental with each step of the process, For

example, when obtaining the fundemental the e th order harmonic term is
A
reduced by a factor of *X'kwi'bh each step. Thus if the eigenvalues of

the problem are widely separated, one would expect rather rapid coavergence.
On the other hand if two of the eigenvalues are close together, say ), and

)\, for example, then one would expect slow convergence as the second term

would only be modified by the ratlo Az with each iterative step.

A

D, Hermonie Equation Exemple

The example chosen is rather trivial in thst an analytical sclution
is readily evailable. However, it should serve to illustrate the method

end is annlogous to the two~dimensional wave equution problem encountered



17

later. The differential system to be considered is

o Lx L
Ld/(O} = O
‘?(ﬂ‘}:O

The normalized set of eigenfunctions for this problem will be recogniszed

aa!/z e %’i 2ran 2X , //Z Al 3Xx 5 +++ and the corresponding
m [ 74

eigenvalues 1, 4, 9, +++ ,

The differential equation of (37) can be written in the form

/_ & = -2 7_ (38)
J_Z‘
where [_ denctes the simple operator Z;ZL . The first step will be to

obtain the Green's funetion for the corresponding homogeneous problem

L}f = © (39)
1&,(0):0
-(7(7):0
This is well known® and is given by
Geg =-2(r-¢§) x=35
=—(=T)§ , x=z¢s.
(40)

&4 general expression for ths Green's function for a second order
system is given in Ince (3) p. 257.
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Next a La/" function must be assumed which will satisfy the boundary conw
ditions. As a matter of convenience & rectangular function as shown in
Fig. 1 will be used for éio » This function is discontinuous at o and
-, but this will not present a serious problem as all operations on ya
involve integration rather than differentiation.

How ‘J’ is obtained from the equation

-
Aat’(x) = - h'fé (x,€) 700?) AL (41)
o
where 7; is chosen such as to normalize \a' . Hormelly, in a more com-
plex problem one would have to perform the integration numerically. Howe-
ever, in this case (f" was purposely chosen such that (41) could be inte-
grated readily. A similar equation applies for obtaining ‘Effrom ‘J’ .
The initial function 1610 and the first two successive approximetions are

sketeched in Fig. 1. The funetion 31 is 8o close to the exact solution
V:—f‘; a~se x @8 to meke them indistinguishable in the sketch. Also,

these functions and the valuee of )\‘ and )\ are tabulated in Table 1.
It can be seen that in this case a relatively good epproximation is obe
tained in just two mteps, even though the initial function y “is a poor
approximation, Notice that the error in the eigenvalue is less than 1 per
cent. This rather rapid convergence is due to the relatively wide sepa-
retion of )\., from the other sigenvalues of the problem.

Another somewhat similar example involving the harmonic equation is

the differential system
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A~

Fig. 1 B8ketch of u{. L}'and g“.

Table 1. Equations for Successive Approximations

-
M ‘4 A"
A —
0 Vi
*
/ 39 = (-%) Iy
s - 2(2) (2
2 . e Tr) (7,—)} /. 006

L4 - - L]

/A/Wb x /- [efa) "

oo 2
V7
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Q‘FA%/

y/(o) = 0
5((/0 = 0

where the prime denctes the derivative. This problem is analogous to a
wave equation problem encountered later in which the normal derivative
rether than the function itself is set equal to zero on the boundary. It
might appear st first glance that the procedure for solving this problem
would be the same as that used in the previous exemple. It is not,
though, because the Green's function for the corresponding homogenecus

problem in this ocase,
J 2
\% (43)
Ax*
ud (o) =
(a/ ar) = ,

does not exist. This is due to the feet that (43) has an eigenvalue et
the origin. This is to esy that the homogenecus system of (43) is come
patible and admits a nontriviel solution, namely & constent, which satisfies
the boundary conditlions and the continuity requirements at every point
within the interval. One would expect to encounter difficulty in such a
case.

One way of obviating the difficulty is to add and subtract 5 é’i to

the differential equation and then regroup terms as follows:s
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[hrdy) » vy w

where

A:)\”5. (45)

Now & Green's function will exist for the system

Z

Ty T
EL ‘Coy = O (46)
La/(/r} =0

and one can procesd as before with /\ as the parameter of the problem,
Onee the wigmvalﬁeal /N, , A\, , +++ have been determined, then the corre-
sponding cnes in the original problem cen be obtained from (45).

The constant 5 may be chesen to be any convenient value exeept the
sigenvalues of the original problem. These values must be avoided or the
system of (46) would become compatible and the originel difficulty would
arise again., However, there is nothing to prevent choosing J to be
infinitesimally smell, and in this case some simplification results,
Briefly, without going into the details of the solution, the Green's

function for small 5 approaches

Glrg) ~ = - 7 [G-m+ X %

°"l
A
iR

2

';tf’“"" -1 [(X*—/T)Z'P%: x

1\

g, (47)
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Note that (& ( X, % ) consists of a constant term plus a variable one,
and s § epproaches zero the constent term spprosches infinity. This,
however, presents no difficulty if the initial léLo function is chosen such
thet it has no constant component, Then the only significant part of the

Green's function is the varisble part which is not dependent upon 5 .

The resulting eigenfunctions of the problem are I/; Cov x V%_ Coe 22X ,

U%W\?)C;”'v

Thue, even though the Green's function for the original problem does
not exist, the problem can still be sclved by adding and subtrecting a
term in the differentisl equation such that a new problem is formed which

does not have an eigenvelue at zero.
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III. THE WAVE GUIDE

A. Hathematical Formulstion of the Problem

At this point a resume of classical wave guide theory will be pre-
sented, Of necessity, the presentation must be brief, and the reader ia
referred to one of the many texts on the subject for a more detailed
treatment. The approach used here will be essentlally the same as that
given in Slater (12).

The assumption will be made from the beginning that the walls of the
guide are perfectly conducting, and that its interior is filled with a
lossless homogensous dielectric materisl., The cross~sectional shape of
the bounding surface of the guide may be arbitrary as shown in Fig. 2,
and the coordinste system will be chosen with the g axis in the longi-

tudinal direetiom.

Fig. 2 Coordinate System for Wave Guide
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The field within the guide must satisfy Maxwell's equationse, the
divergence relationships and the boundary conditions listed.

= _ 2_)?
VX(_C; - /ugt (48)
;o 2E
vV X X = € >z
Vi =0 (49)
< - X = O.
Boundary conditionss
NxE =0
Nx¥X=o0 o

(50)

where ¥l denctes the unit normal vector slong ( , and £ and ){ dencte

funotions of X , g+ 3 and T at this point. If time dependence

of the form (‘jJ “” is assumed, Maxwell's equations become

vV X £ = T wM H
v xHd = JWwE E (61)
where . . jwt
5 = E("'/‘éyj) cC
—_ — st
}( = H(A’,tj,g) c’ (62)

Teking the curl of both sides of (61) and combining the two ylelds
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end if V- E and V- # are both zerc the above equations become
E + W*MEE = 0

vl
Vzﬁ + wu€H = o.

These are the vector wave equations,

(88)

(54)

Further, if the wave is assumed to propagate in the 3 directicn,

~ ¥
the ‘9' dependence is of the form C ¢ s 8nd the wave equations then

become
Z —, z -,
V. £+ k. E =0
NEIHT+ kH =
where
., -
E = £ (7(161) C
— -r
H = ff’Cx,g) e 9

At this point it will be convenient to resolve ~ and // in terms of

(65)

(56)

(57)

(68)
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their transverse and longitudinal components. Let

E/:E‘:;‘/'EEJ
H*~ = H, + k (69)

where /2 denotes the unit vector in the j direction and E, » and EQ
denote the transverse snd longlitudinal components of Zg:/reapectivbly.
The primes have been dropped at this point, but this should cause no con~
fusion if one remembers that the resolution did not take place until after
the } dependence had been removed.

Now, if the equations of (59) are substituted in the wave equations

of (65) the following «qmtion& result,

(VE, +kE,) + (9 E, + £ 6 )k = o

z — z 9 2 - (60)
(v} A, +E H) + (% Hy+ K Hy ) = 0
In euch squation the terms in parentheses are et right angles to each
other, and therefors both terms must be zero, Thus £ 3 and Af 3 must
satisfy the scalor wave equations
z z

Ve Hy+ £ Hy =0

Also, by substituting the equations of (59) imto Maxwell's equations

and, after considerable algebreic manipulation, one can obtain the trans-
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verse components of the field in terms of the longitudinal components as

follows®,

— Y Jﬁa .
Et’ :v-——/ézvtgé + kcz.[/ex vt()LHZ’)]

A (82)
= W% My - /(;[’6"‘74‘%)] ,

|

whers 60 and )7 are the "free space” phase shift constant and wave im-

pedance respectively, i.e.

50:- wV‘/—CL? (63)

w=\Vz - (64)

Equations (82) are particulaerly significant, From them it can be seen
that onoce E} and Hj; have been determined, the field within the guide is
completely specified. Usually two separate cases are considered, one where
E 3 = © and the other where H} = O, Then any general propagating
field can be represented as a superposition of the two cases. The case of
zero £ 3 is called the transverse electric or TE mode and the zero H}
case the transverse megnetic or TN mode.

The problem has now been reduced to one of finding £ 3 and //; » both

of which must satisfy the scalar wave equation. The boundary condition for

B3ee Remo and Whinnery (10)pp. 344-354 or Slater (12) pp. 6-8.
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E 3 is obvious, as 3 is tangent to the surface of a perfect conductor
at the boundery and thus must be zero along (_ . The corresponding re~
lationship for /L/;I i3 not soc obvious because //J , being parallel to the
bounding surface, satisfies the originel - /:/" = O requirement. The
answer lies in equations (62) for the transverse components which must also
satisfy the NXE =0 gna R-H = 0 requirements. It can be seen

from (62) that if H} has a normal derivative at the boundary, £ ~ will
have & tangential component there which would violate the W x E=oO
requirement. Thus the normsl derivative of H} must be zero along C .
As yet, nothing has been said about the szero divergence criteria. The

mere fact that the fields sabisfy the wave equation does not insure sgero
divergence for E and f7 » However, in this oase the equations for the
transverse components of the field were derived from Masxwell's equations.
Thir is sufficient to make div E and divH gerc, as each is the curl of
snobther vector and the divergence of the curl of a vector is identically
2ero.

In summary, the wave guide problem rsduces to two separste boundary

value problemss

1. TE cese
VL + kz =
¢ 'L/D HJ ¢ (85)
% = 0 o C
In
2. TH canme
V E + £ =0
e &3 Eg (88)

n
[
Q
i
O
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Solutions to the above equations exist only for discrete values of /%C ’
which in general are not the same for both cases, of coursze. These values
of £, are quite important in wave guide work as they, along with the
frequency, determine the propagating characteristics of the system, In
the following section an iterative method for finding these allowable

values of éb and the associsted solutions will be presented.
B. Solution by Suceesaive Approximations

1. %The penersl case

It will now be shown that the wave equations of the previous section
can be solved, at least in prineciple, by the method of successive approxi-
mations. The procedure to be ussd here will be similar to that used in
gsection II, and while discussing the pgeneralities of the method both cases
will be considered simulteneously. The differential system to be solved

is of the form

Vi o+ A~ F xy) | P

Ay }mc

aMn

(67)

2

where \/  4s now understood tc be the two dimensional Leplacian operator.

This problem with ?;/=»0 ies discussed in some deteil by Slater (12), and it
is shown there that the solutions form an orthogonal set which can be used

for the expansion of any arbitrery function which satisfies the boundary
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condition®. The addition of the % «, 4 ) term will not invelidate any
of this theory. This can be seen by recalling the procedure used for
showing that the solubtions are orthogonal, If ¢,? and ¢/m are eny two

nondegenerate solutions corresponding to A\, and A..then

Ve + [du-glt = o
VL¢ML+[AW—?J¢/WC = 0.

Multiplying the first by £, and the second by <, and subtracting ylelds

(¢M7L¢Zn - % vl¢/bﬂ) + (h/"‘ 2"""‘)¢/n¢/wg = 0, (68)

Notice that the terms involving Z/ cancel, Now, if the equation is inte-
grated over the cross-sectional erea, and the two~dimensional form of
Green's formule is used to transform the first term to a line integral
around C » it cean be seen from this and the boundary conditions that ¢§,m
and ¢_ are orthogonel. Inclusion of the Z/ term in (67) is necessary,

as the seme trouble will be encountered here as before with regard to the

oF
existence of & Green's function in the case of the 55 < C boundary

condition,
Returning to the original problem, it will be assumed that % is

such that there is no eigenvalue st the origin and that the solutione are

*The restriotion that the srbitrary function must satisfy the boundary
condition is not a necessary one, However, by meking this restriction, the
question of continuity at the boundary is avoided,
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nondegenerate, i.e., a different eigenvealus will be aesocisted with each

eigenfunction. First let equation (67) be written in the form

[V-g 1 = —A¢

(69)
and let (& (7, 3', §, 1) be the Green's function for the system
{‘i72’~— ] ¢ = 0O
¢:O 7
9¢_0 O'VLC, (0)
SO

As before, the auoeessiéu approximations qb’ » sﬁ‘l, eee will be formed
from the differentiel equations

[v*-g [+ == 2"
[VZ’“%]¢1 _ A2¢,

I

[vl; 7;] ¢.“”

{

M =7 (71)
- X )
where <£°is the initial function chosen such as to satisfy the boundary

conditions,

/
Now the solution for < ean be written in terms of the Green's

funetion as

cp'cx,g) = ~?0If/é('</;1,§’,h) #°(g, ) LE L. (12)
| 5

where the integration is over the crose-sectional aree S . Both qbo
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and (> can be expanded in terms of the eigenfunctions of (67) as follows:

PUER) = A b5 N + XGKER) + -

+t A [ (§)+ - (3)

GG = qaPYER) + G ap gEW+ 0 (1a)
+7mw;)%(é,n)+

where Lﬂ, . % , ++» are the normalized eigenfunctions of (67) and .

and g - Bre given by

A, = ffa“(éjh) W.(5,0) L€ Ln (75)
S

Jnry) =//G(zc;/,<z,7z)%(%,n)o(§a“l . 8
s

Then, substitubing the expanded forms for <P eand (> into (72) aud

taking adventage of the orthconormel properties of W, s (ﬂz s *++ leads to
{ [
¢('f;#) = "A [a‘(gl(",g) fa,_?l(x,;;).,_,.. amgm(g/a) +...J (717)

However, the eigenfunction % cen be written in integral equation form

as

¥y = ”Amjfé Yy, gn) ¢, en) AFdn (e
3

It can be seen by comparing (76) and (78) that



Y K
oo = =

and substituting this into (77) gives

i 'OL( Ay . laal P
¢ :)‘{3,%+ PVRCR I %n(//”“k‘ ].(Bo)

The arguments with regerd to convergence are the same here as in the
one=dimensional case previously analyzed. As a matter of fact the whole
derivation is esgentially the same, except thet the one<«dimensaionel
functions of the SturmelLiouville problem have been replaced with two-di-
mensional ones., The whole matter of extending the theory to the two-
dimensional case hinges upon the validity of expanding a function in terms
of the eigenfunctions of the problem, No formal justification of this will
be given here. However, the proilem hes been investigated rather thoroughly
by Titehmersh (14), and he states that such an expension is valid, at

least for the ¢ = O boundary condition casc,

2, Green's functions for the TM and TE casmes

It has been shown in principle at least, thet the wave equation can be
solved by the method of suceessive approximations. However, before the
method can be applied the Green's fusction for the problem at hand must be
determined, and tids is ususlly not an easy matter. In a sense, a diffie

cult problem, that of solving the wave equation, has merely been traded
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for an almost equally difficult one, that of finding the Green's function.
As the TV case is the more straightforward of the two, it will be con-
sidered first.

In the T¥ case é;} must be zero on the boundery. Thus tne Green's
funetion for a differential system of the form

Vi = o (81)
& = O o C

must be found, This Green's funetion is relatively well known and is
discussed in Fhillips (8) and other texts deeling with potential theory.
However, the approach used here will differ somewhet from that of Phillips
and will be essentimlly the same sz that used before in section II. The

solution of the equation

2 { v
Ve'=~-2<p (82)
haes been written in the form

¢'(,(/(7) = Jj(y 4,5 7 [‘ hlqﬁo(g, )1)] o(ga(n _ (8%)
S

This will be considered the defining equation for (3'({;%, g N, i.e.

G must be such thet (83) will be true. If one operates on both sides of
(83) with V'~ it cen be seen thet V (> must have the properties of a
delta function just sa in the one-dimensional ¢ase. Thus (> must satisfy
the homogeneous equation (Bl) and the boundary conditions except at the

point (%,7) . At this point it must be such that the integrel of vV &
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over a snall area including the point will be uniby., Keecalling e little
electrostatic theory, it cen be seen that the potentlal due to a fine
line of charge at (£, M) (and the associsted induced charge on the con=
ducting boundary, of course) is just the type of function needed. This
function sabisfies Laplace's eguation except at (€ , ), is zero on the
boundsry and is such that the integral of V*G over a small region in-
cluding (5, N) is & constant, It only remains to find the linear cherge
density required tc meke this integral unity.

Consider a eylindriecal surface of infinitesimal radius g , of unit
length and coexial with respect to the fine line of charge at (S, W) .
The potential in this region will be approximately thet due to the line

of charge and is given by

G -8 by 4+ conalant (84)

where /” 1is the distance from the point ($, %) to (%,4) and  is

the charge per unit length in the MKS system of units. Then V(> is
given by

1
2me 2.7 & r

r . (85)

The surface integrnl of this over one end of the eylinder, which is of
interest here, is the same as the voclume intesral because of the unit
length of the eylinder. This volume integral cen then be transformed to

a surface integral using the divergence theorem and the result is
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(fv)'GAS :\[/“%V'“’FI"_M :-——6@—. (88)

Thus () must equal — & and (G becomes -z_lFr L gn the neighborhood

The Green's function for the TE case ( g—‘g = O on C ) is not

quite so obvious as that of the TM case just described. The same problem
is encountered here as in the example of section II. The Green's function

for the system

v =o0
gf _ o o C (87)
on

doer not exist becamuse the system is compatibvle, i.e. $b = gonstant is s
perfectly satisfactory nontrivial solution, at least in the mathemetical
sense of the word, Thus the problem must be modified. Let 5<ﬁ be added

and subtracted to the original equation and terms regrouped as follows:

Jp+ b = F (88)
oS¢ _
§7 = O o C
where
N = A—S.

Now a Green's function will exist for the homogeneous problem
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Vi + S = O

°F _
an

(89)
on C

providing é; is not an eigenvelue of the problem.

Yere, as before, some simplification of the problem results from
choosing S infinitesimally small. This being the case, the Green's
function must satisfy the homogeneous differential equation (89) within
the region S except st the point ( §, ), Recalling the similar
problem of section II, one would expect the S G term of (89) (with G
substituted for ¢ ) to approach avcenstant as  § goes to sero. This
will be assumed at this point, and it will be shown that a function com=-
patible with this assumption and all of the other requirements of a Green's
funetion cen be found., Although not absolutely necessary the function will
be deseribed in terms of eleetrostatics in order to provide a physical
plcture for better understanding.

The Green's function will be fabricated in four steps beginning at
the point ($,)1) . At this point it must have the usual delte function
propsrties, and thus this calls for a fine line of charge of — & coulombs
per meter at point ( €,%) as in the previous case, Then, if the § &
term in (89) is to be a constant, a uniform charge density must exist
within the region 5 as (89) is just Polsson's eguation, Also, as the
normel derivative of & is to be zero on the boundary, there cen be no
electrostetic flux impinging on ( . Thus by Geuss' law the totel dis-

tributed charge must be equal and opposite to that of the fine line at
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(€ ,N) . This, slong with knowing that the charge is distriluted uni-
formly, enables one to find the charge density.
So faf, the potential function will satisfy the differential equation
(89) sand will have the appropriate delta function properties at (&, n)
but it will not satisfy the boundary conditions., Therefore, a function
satisfying Leplsce's equaetion within ( and having a normel derivative
on (_ opposite to that of the potential due to the fine line and dis-
tributed charges must be found and added in order to satisfy the boundary
conditions, This constitutes the Neumann problem or the second boundary
value problem of potential theory, and such & function ean be found within
& constant®, The physical distribution of charges giving rise to such a
function is a double layer of charges on the boundaryb. Finally, & conestant
term must be added which approaches infinity es S goes to zero. This is
necessary to meke the g;é; term equal to the distributed charge density
constant,
Thus the final potential function is a superposition of the potential
due to:
1. A fine line of negative charge at ( §,)7)
2, Uniformly distributed positive charge within (
3. Double layer of charge on C
4. A constant term approaching infinity as 5 goes

to zero.

2A deteiled explanation of thie problem ecan be found in Phillips (8)
p. 170.

B) discussion of this can slso be found in Phillips (8) p. 140.
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Tt can be seen thet if the initiel <P~ has no constant term, then the
consbant term of the Green's funetion is of no importence and cen be
omitted, This is an important point; choosing S infinitesimelly small
certainly doss not simplify metters unless <i5o is chosen such as to have

no constant term.

3. Comments on the practical aspects of the method snd degeneracy

In studying the theory just discussed one is immedistely struck with
the immensity of the task of finding the Green's function for the general
problem. I one were to do this by means of some numerical process, the
first step would probably be to subdivide the region within ( into many
smaller ones and proceed on an incremental basis. The electrostatic
problems arising from placing & fine line of charge in each of the incre-
mental regions must be solved, and this gives rise to as meny separate
electrostatic problems as there are incremental regions. Fach of these
problems would, in turn, have to be solved by some sort of numerical
procesga, And further, all of this must be done before the iterative
process casn even be begun. At this point all of this may seem a little
hopeless ma a practical means of obtaining a solution, at least without
the aid of a computer. However, there is s possibility that some short
cuts ¢an be used by approaching the problem from a little different view-
point, and this will be discussed in a later section.

Also, the possibility of degeneracy in solutions has been cerefully

avoided up to this point. Degenerscy occurs when two or more independent
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solutions have the same eigenvalues, and tsis usually happens when there
is some sort of symmetry to the bounding curve (C . An example of this
would be the case where ( iz a square. Here the Tiy, and TM,, modes
have identicel eigenvaelues. This problem of degenerate solutions is dis~
cusged with regard to vibrating membrane problems in Weinstoeck (15), and,
as the same equations apply in both the wave guide and membrane problems,
the theory applies here. Weinstock shows that the number of solutions
having the seme eigenvelue must be finite, and further that linear combi-
nations of these can be formed in such & way that these combinations are
orthogonel with respect to each other (and the other eigenfunctions, of
course ).

The question now srises es to how degensreacy wmizht affect the method
of successive approximations just described. Once it hes been established
thet linear combinestions of the degenerate modes can be formed which are
orthogonal, then it can be safely concluded that the eigenfunction exw
pansions used in proving convergence are still valid in the degenersate
case. Nothing then will be affected except the final conelusions, It
will be recalled that the method was deducsd to eonverge to the lowest

order mode, say 92 s because esch of the higher order ones, say Sé;.-

was reduced by a factor of f%f relative to 92, with each ster of the
n

iterative process, Now if this lowest order mode is & doublet for example,
then both of these ter:s would remain in the same ratio with reapect to
each other, while the others zo to zero in the limit., Thus, the method

would converge to 2 normalized linear combinstion of the twe with their
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ratio being the seme as in the original assumed gﬁ'ofunction. The eigen=
value obtained would be corrsct but the two resulting modes are inseparable
using this method,

This is not surprising, as one might expect something like this to
oceur regardless of the method used, since the way in which linear combi-
nations are formed does not lead to a unique set of orthogonal combi-
nations. Certainly the same thing holds trus for the Ritz method where
the technique depends on the minimal properties of the eigenfunctions.
That is, any normaligzed linear combination of degenerate modes has the
same minimal property as any other linear combination.

One further comment might be made at this point with regerd to ex-

tending the method to the three~dimensional differential equation

Vi + [» - Z““b‘!é’]CP = o . (s0)

This equation is of considerable importance in mathematical physics. As
well as being of interest in clessical physics, it will be recognized as
the femous Schrodinger equation of quantum mechanics. All of the theory
Just discuseed will epply equally well to this equation after making a few
nodifliecations to aecount for three independent varisbles rather than two.

The modificetions sre rather obvious and will not be pursued further,
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IV. THE RESONANT CAVITY
A. Genersl HRemnrks

The seme essumptions with regard to perfectly conducting wells and

homogeneous loseless dielectric meteriel will be made here as in the wave

gulde proulem, It has been shown previocusly that if time deperdence of

rar T
the form C° 4is assumed, Maxwell's equetions take on the form

YXx E — — g WM H

VXH = jwéerE | (62)

where both [~ and /f are functions of x Y end 3 - In addition, the

field must satisfy the zero divergence relationships and the boundery
conditions, i.e.

V-E =0 (92)
V-H =0

MxX E =0 (93)
%—‘Q:O 0’145

where .5 is the closed boundery surfece. These equationg define the

— —

problem, ard if an £ and /7 ean be found wiich will satisfy these

equations, thet is all that is required. It might be pointed ocut that for

the purposes of this problem, the zero divergence equatione are superfluous
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in that they follow directly from Yaxwell's equations, i.e. both E and
/Zf— are the ocurl of a vector and thus their divergence is zero,
If the curl of both sides of (91) is taken and the equations combined,
the result is
Ixvx £ — EE =o0o

vax/:-/-—/iz//zo (94)

where
2 z
k - wAaE . (986)

——

Further, if £ and H have zerc divergence the expressions of (94) can

be written as

4
~
M
+
=
M
[l
o

(98)

QN
N
+
-
I
{
o

These are the wvootor wave egquations, YNow the question arises, which set
of equations should be solved, (54) or (96), or does it make any difference?
An attempt will be made to answer this question.

Consider (94) first. If the divergence of both sides is taken, it can
be seen that V- £ and V- /:;7 are both zero, and therefore any E end /;7
satisfying (94) must also satisfy the gero divergence conditions and thus
Maxwell's equations. Also, only one of the equations must be solved, say
the E equetion, as the expression for the other will follow directiy

from Maxwell's equations. Therefore, the problem reduces to solving

differential equation
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— kPE =0
o

\ (97)
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and any £ setisfying this will be s satisfactory solution of the
problem.

Next consider (96), say the E equation in particular.

Taking the
divergence of both sides yields

V-V E

|
=~

V~L—VKVXEZPVV-§J (08)

——

— % vo[vv-E]

which is not identically zero.

Thus, simply finding e solution of the
vector wave esguation

lE: Ie)

x

ViE +
n

mi

X = 0 o 5

(99)

is not sufficient for solving the problem. As a matter of faet solutions

of (99) will definitely not satisfy Maxwell's equations unless they also
satisfy the zero divergence eriterion.
There is a simple example of this.

Consider the funection (P which
satisfies the soalar wave equation



(100)

Then the gradient of ¢ winl satisfy the vector wave equation (99) and the

boundary condition for £ . This can be verified by direct substitution

in the vector wave equation es follows,

SE(sp) + kTP
o gxux 9P + 9(V-IP) + VP

= v (v + k') = o

But V *© V< is just — /<Z¢ from (100) end thus V& cannot satisfy the

zero divergence criterion, ss P was tacitly assumed to be a nontrivial

solution of (100).

At this point it might not seem worthwhile to deal with the vector

wave equation (99) rather than that of (97) which will always give a valid

solution to the problem, However, this gero divergence difficulty with

the wave equation can be eircumvented in a rather obvicus way,

Assume a
solution can be found for the general equation
VA + KA =o
NxA =o on S (201)

which is not simply the gradient of a scalar function, Then V X A jg

also a solution of the seme equetion. This can be shown by direct substi-
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tution as follows:
Qi(exA) + kK (3xA)

— z -
X X(UYXA) + VV-(IxA) F k™ (VX A)

Also, if /) satisfies the WX A = O condition on the boundary, then

VX A must satisfy the 71- (¥ xA) =0 boundary condition as V XA is at
right angles to A . Thus VXA would ve & perfectly satisfactory
sclution for the megnetic field because it has zero divergence and satis-
fier the wave equation and the proper boundary condition. And further,
VX (V<A ) would be a satisfactory solution for the electric field
(modified by & constant, of course). Therefore, even though A itself is
not a valid solution to the problem, valid ones cen be obtained from it
by & simple matter of the curl operation, In all of this discussion it is

—

necessary that A not be the gradient of a sealar or V X A would be
identically zero.

In passing, one might think that the same thing could be accomplished

by resclving )i into its solenoidal and irrotational componentsa. This

83¢e either Phnillips (8) p. 187 or Page (7) p. 46 for a discussion of
resolving vector functions into their solenoidel and irrotational components.
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is a rather interesting avenue of investigation, but not very fruitful es
far as this problem is coneerned. It can be shown that if ﬁ satisfies
the wveotor wave equation, then both the solenoidsl and irrotetional come
ponents of /‘T will also satisfy it. However, if A satisfies the

nxA =0 boundary condition, then the solenoldal component of /Z}_ will
satisfy neither the boundery condition for E or I s and 8o is not e
valid solution for the problem at hand. One cannot help but think that
there should be some boundary ecndition which might be placed on A which
would give the appropriate one for the solenoidal component of A s but
the solution is not obviocus.

By this time one might wonder why all the concern about which differ-
ential equation should be solved. Why not just solve (97) rather than the
wave equation and be done with It? The answer to this is that the vector
wave equation is usually easier to deal with then the other expression.
This is especially true when rectangular coordinates are used, as v?*
operating on e vector is simply the laplacian operator operating on each
component of the vector separately, Thus the veetor wave equation reduces
to three scaler wave equations.

Before proceeding to the problem of the vector Green's funotion, it
might be well to mention some of the properties of solutions of the vector
wave eqmtziane‘. As might be expected solutions exist only for discrete

A
values of £ o &nd theese values of k- determine the resonant frequency

84 detailed treatment of this subject will be found in Slater (12)
P 57.
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associated with each of the different modes aceording toc the equation

(4
fr - l'/r‘//tté (102)

where 1§, is the resonant frequency in cycles per second. Also, the

solutions are orthogonal in the sense that

jgm.' E, Lo = {/ for e (103)
™ e FE o
v o fow

J/—-//m’lz/- &LU":{/ = e (104)
vV g o /(rw/l/ft:#/n

Degeneracy cen oceur, but here again linear combinations of the degenerate
solutions can be formed which will be orthogonal. All in all, the so-
lutions are guite similer to those of the scalar wave equation, except for

being vectors rether then scalars.
B. The Green's Function for the Problem

Before discussing the iterative process as applied to the vector wave
equation, the matter of a suitable Green's function for the problem will be

investigated, The general spproach will be the seme as before. Consider a

vecbor equation of the form

VA = R
hxA = o (108)
ar w-A = o on S
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where X is an arbitrary function of X , {1 end é +» Edither of the two
boundary conditions may be applied in the discussion which follows, but
not both simultsneously, of course., A Green's function must be found such

thet /5‘ may be written as

Z(‘/H'é) :_JGM,(';/Q,E,R,@ Rz n, )L An LS (108)
%

where (> may be thought of for the time being as some sort of operator
such as to meke the above equation true.

Consider now the possible nature of the operator G , 1If one operates
on the right side of (106) with V7~ the result must be just K . At first
glance 1t appears that G could be the sealar potential due to a point
charge at (% ¥, $) as encountered before, as V% operating on it would
have the eppropriste delts function properties at (£,67% 5) . Howsver,

this lemds to an impozsible situation with regard to the boundary conditions
on /:f . As a matter of fact ( ocannot be any scalar function. This can

be seen by letting K be a unidirectional vector. Then according to (106)

A must be in the seme direction, and the boundary conditions would be
vioclated, Thus the possibility of using a scelar function for G is
completely ruled out.

Next consider the possibllity of using a vector funetion for G .

Thie being the case, G opersting on K must result in a veetor, and thus

dotting é into /_é is ruled out. If one tries crossing 5 into & »

—

the result will alweys be at right angles to K and this possibility is
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also eliminated. To get around this difficulty one could conceivably de-
fine a new form of vector product, but this did not prove to be fruitful
a8 far as the author is concerned.

The next step up the ladder as far as complexity of functions is
concerned, is a dyadic or second order tensor™., This appears to be the
answer as one can define the components of the dyadic in such & way that
(106) will be true. Some of the previous concepts of (Green's functions
will have to be modified slightly, but most of the basic ideas will remain
the same. At this point, in order to keep the notation from becoming un~
wieldy, let the coordinates of the poimt (X, Yy 3/) be dencted by just

X; and those of (5, M, )by &, . Then the Green's function will be
written as éi (¥¢, ¥.) where the double bar indicates a “double vector"
or dyadic.

Now (106) can be written as

/z]—‘()cb-) = /G:(xe;%)'f(?}) Lg. . (107)

v

Also, let & and R be written in component form as

*Por purposes of this problem a dymdic and tensor are one and the same
thing., The difference is one of notation, and as the dyadic notation fits
in better with the standard vector notation than does the tensor notation,
the term dyadic will be used throughout,



‘1’?3/;‘—: + ?3;Fj -+ g33 ]—QE (108)

(109)

I

Al

Then G- would be

ol

',—é = (?uz—‘f‘ 31154' gsr_lé)r:
+ (ﬂ«zi_"' gzzj +g317’1)’;
- _ (110)
+ (Gus ¢ + Gazj +335/e)l§
How this must be such that

jvl(

v

R) Le =R

Ol

4

remenmbering thet VZ operates with respect to the space coordinates X,
and the integration is with respect to §. . The quantity v ( G- R)

can bhe written ss

v (G k) = (VG ) ¥ + (VG + (3°65) T,

[l

(111)

where

= ?,,T + 31,3" + 930 K
= el T G F faz k (112)

= %/37‘(‘ 3133— -+ 3332

S S &
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In order for (> %o be a suitable Green's function each of the terms in
parentheses of (111) must have magnitude properties of a delte function
end vector sense in the X , ¢ send 3 directions respectively for the
three terms. This being the case the integral of (111) would then yield
R as it should. The expressions for the vector potentiel due to point
currents st é; in each of the x , (g and 9_ directions are just the

type of functions needed here, Thus in the neighborhood of Ei

6/ - Y s ) G, = 4/irvr ) 6'3 4 mr (113)

where | is the distance from &, to X%, .
However, while these vector functions have the appropriate properties
in the neighborhood of € , they do not at the boundary. Thus, each must

have added to it another vector function aatisfying'ﬁl7¥ = O within S

and such thet G, , &, , and G, will setisfy the appropriate bowndery
condition. Thet is, é;'. é;; s 8nd é;; must each satisfy the boundary
condition 7-A = O or 7 xA =0 , depending on which oase is being con=
sidered, These added functions might be thought of as due to induced
currents on the boundary, although the magnetic analogy requires a little
imagination., The problem is very similar to that encountered in the
electrostatic case where induced charges on the boundary are necessary in
order to satisfy the boundary condition. In general the problem of finding
the required current distribution is not an easy one. However, that such

a solution should exist, for G, say, seems ressonable, as each of the

separate components of G, is Jjust a Dirichlet problem in itaelr®,

Bgee Phillips (8) p. 185 for a discussion of the Dirichlet problem.
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It might be pointed out in passing that the term Green's function es
used here means something altogether different than the term as used by
Stratton (13)., Stretton considers the vector Green's function to be any
suitable vector function which, along with the vector form of Green's

theorem, will enable one to integrate directly the vector equation

IXKIX A = uJ. (114)

Here the term Green's function is used in the same sense as in Schwinger's
report on the theory of obstacles in wave guides end cevities (11), al-
though it is not the same identical function. The author is, however,
indebted to Schwinger for the ides of using a dyadic Green's function for

the wvector problem.

€, Method of SBuccessive Approximations Applied to
Vector Wave Equation

In the resonant cavity problem one may solve for either the electriec
or magnetic field, and then obtain the other by taking the curl of the one
for which a solution has already been found. The eleotric field has been
chosen to demconstrate the method, but as far as the method of successive
approximations is concerned there is no partiocular advantage in working
with one over the other. The electric field must satiafy the equation

v°E + *E = o
N xE =0 on S (115)
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and the gzero divergence criterion. However, as has been shown previously,
the zero divergence criterion is not a serious matter, as the correct
magnetic field will still be given by T X £ even if £ does not have
zero divergence.

As before, the iterative process begins by assuming some vector

function £ 7 which satisfies the boundary conditions, and then obteining

from it a new epproximation Z?” from the egquation

v E! = — kT E®° (116)

Then E' is used to obtain E* , and so forth.

In order to show that this process will converge to a solution of
the original problem, certain vector functions must be expanded in terms
of a suitable set of orthogonal functione. No proof will be given here
for the validity of such an expension, and Slater (12) may be referred to
for & more thorough treatment of the subject. Briefly, Blater shows that
the eigenfunctions of both the £ end A field problems form infinite
sets of orthogonal functions, either of which may be used for expanding
an arbitrary solenocid function satisfying certain not too stringent conti-
nuity requirements, The only advantage of using one set over the other
would lie in the rate of convergence of the expansion. However, if the
function to be expanded has both solencidal and irrotational components,
then snother infinite set of orthogonal irrotational functions must be
added toc the solencidal set in order to have a complete set for the exe
pension. Such an irrotationsl set can be obtained by teking the gradient

of each of the eigenfunctions of the scalar wave equation problem
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b + k' =0
¢:—0 on S .

(117)

These vector functions are orthogonsl not only with respect to themselves,
but also those of the solencidal set.

Returning to the original problem, the solution of (116) can be

written in the form

EICX‘-) = — Xj é ., &) - goéf,;) ALE. (118)
Vv

where /CL has been replaced with the parsmeter A in order to avoid
confusion ebout superseripts. Now, at this point it will be convenient to
group the terms of E in a little different wey than was done in the
previous section. There, each column of the ?4.,4. matrix was thought of
ag constituting s vector and these were denoted é » a_ and 5 .
Here the terms will be grouped in rows rather than columns, i.e. é will

be written as

—

G: = : i -+ o Y -+ E— ? (119)
where

i == {3” Z‘ =+ g/l :)“ + 3'3 E

V = z1 Z -+ 22 T -+ 2 E

_ g ? ’ 7 i (120)

z

= ?3/21 +?3ZJ. -+ g;;g



Then

G-E°=i(X-E)+3(VED+E(EE). qa)

Now, the integral of this vector function ig just the iﬁtegral of each term
separately, so at this point each of the terms in parentheses will be ex-
panded by means of the orthogonal functions just mentioned. Before doing
this, however, it might be pointed out that the vector components i »

—\? and ~Z- of the dyadic E do not, in general, satisfy the boundary
conditions of the problem, nor do they have any particular physical in-
terpretation. However, this does not prevent an expsnsion in terms of
functions which do satisfy the boundary conditions. There exists an
analogy in the case of an ordinsry Fourier series expansion of an arbitrary
funetion within the intervel from ¢ to /7 . The arbitrary function does
not have to satisfy the same boundary conditions as <2v»v X in order for
2 valid expansion in terms of Aiwe m¥E 4o exist within the interval.

The orthogonal sets of functions to be used here will be defined as

follows., lLet S_D, ’ 5?2 s *** be the solenoidal eigenfunctions associated

with the problem

VL + A = o

‘)7, x g — O o S (122)

/

and f/ . <f2 s *+» the irrotational onee obtained by taking the gradi-

ent of the eigenfunctions of the secsler equation
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Vi + AP =0

In general the eigenvelues of (122) are different from these of (123).

Then £ ° . X, Y , and Z o¢an be written in expanded form as

—

E(g) = G @:(g‘.) + & flce;,) + -
TE D) S (e

X (x,€) = X, (x) f{(g) + X, (%) i_‘é) + o

+ X k) F(€) + K F (8) + -

Y (X—g;ga,;) = ‘J,(X;) .(Z;Cg,;) -+ HZ(XJ) @L({J PR (124)
+ y,?w P (s) + gz; (D F (8D + - -

—

Z (v, 5) = (%) i(%) + F20x) J’;C‘%}) +

+ 36k B8 + i r) Bt - -

where the coefficients are given by

€, = f§°(ei-> - g(%) Ae,
v (125)

C,, :] £ %Us) - é!‘k(;:.) 5(5:
4
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Then
. E ;| XE° T (F-Eods « k|E-E° Lg
v vV %
%
— _"[6/7(,&7%) + el.xz(x’d""" - e . e(’ X,,(Xi) + C;—X«:(l(') PR J
(128)
_ ., ,
] [ef *(1, ) + G 71(p)+ - G 5{, )+ & Y () + - :‘

+ E[e, Jo i) + Cag e C’,b,’ﬁc:) + e/ 9;04,-)+ . J ,

But 5?71 is a solution of

Vg + AP, = ©

—

and therefore fh can be written as

g = -A,,,fvgq?,l/,g.

(128)

= N[0T e [T, st % [0, 45]
v v v

Now, substituting from (125) into (128) gives
@%1“?\41[47(«*3(% +Egm]. (129)

Bimilarly, %7‘ can be written as



B9
éh:_Ah [ZX:"+3‘(}”;+E3’I":(~ (150)

Thus, grouping together the columne of (126) and using (129) and (130)

lsads to

v (131)

and finelly, the expression for E ' is

E' = - )\'féz-é:"l?z
v

o = A, po
=2 el +(h)eg - as2)

Hr)eE (R )ed ]

The line of reasoning from here on is the same as in the previous case
of the ascalar wave equation. The process will converge to the eigen~
function with the lowest eigenvalue. Any higher order mode can be found by
first finding all of the modes below the one of interest and then elimi.

nating them from the initial £  function. Then the iterative process
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would converge to the mode of interest. It is interesting to note that if

A, is less than )

» the eigenfunction f} will be obtained. This
is of no value in the resonant cavity problem as it is irrotationsl. How-
ever, if E % is chogen such thet it is solencidal, then all of the é_: 7
terms vanish from (122) and a solencidsl solution ia essured. Thus, there

would be quite an advantage in initielly choosing a solenoid function for

£° .

Again one cannot help but be impressed with the tremendous amount of
work which would be involved if one were to try to use this technique t§
obtain numerical results for a speeifiec provblem. However, even though the
method will never be used as such, it i2 nice to know that it does con~-
verge, and some of the basic idess will be carried over into a modifieation

of this method which is teken up in the next section.
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V. HODIFICATION OF METHOD SUCH AS TO AVOID
THE GREEN'S FUNCTION PROBLEM

A. Direet Integration Approach

1. Remarks on solution of Poisson's equation

In the previous sections a great deal of use hes been made of the
Green's function convept. This wes primerily a metter of convenience in
proving some generalities regarding convergence of the method and not a
matter of absolute necessity. A direct integration approsch may be used.

For example, conslder the familiar differential system

0(_&% y
=
(o (x)

(133)
1}(@) = ((f(l,) = O,
Instead of writing the solution in terms of the Green's function as
b
ﬁ :fé()‘, € Vr(sHds (134)
o

one could integrate (133) directly and use the boundary conditions to de-
termine the constants of integration. The resulting solution should, of
course, be the same as that obtained from (134).

A somewhat analogous approach exists for the scalar wave equation

problem, It will be recalled that each of the iterative steps of the
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method just deseribed involves the solution of an equation of the form

Vb = —p
P = (136)
an

where < 1is a known function of position. This will be recognized as
Poisson's equation, and if V7’ is oonsidered to be a three dimensionsl

operator for the time being, the solution may be written in the form®

. _
Fogp = &)L v ([ —evk) A5 ase
v 3

where ! is the distance between the point (*v‘ﬁ)'bA) and the differ-
ential element of integration. This sclution is obtained with the aid of
Green's formula, and the proocess is sometimes referred to as direct inte-
gration of Poiesson's equation.

Each of the terms in (136) has an electrostatic interpretation., The
first term is independent of the boundary conditions and might be thought

of as the potential et point (X, 4,3 ) due %o e charge distribution of

densit within the region. The second term represents en induced
¥

®See Lasz (4) p. 166.
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effect on the boundary, and it must be such that 4 will satisfy the
boundary conditions., If either V&> or ¢ is specified on 5 , this
is sufficient (along with £ ) to determine ¢& within 5 8. For exampls,

if ¢ 1is zero on ,§ , then

CP:Z’/rjé”(U—’L%‘Lﬂ‘fﬁEF'”@J (137)
v g

orif vP - dAdS is zeroon S , then ¢ 1is given by

R e

v

The surface integral term of (137) will be recognized as the potential due
to induced cherge on a perfectly condueting boundary, and the corresponding
term in equation (138) cen be thought of as the potentiel due to a double
layer of charge on the boundary.

In both cases, however, it should be noted that <© has not been
written explicitly ae & function of /~ . Rather, &> has merely been
written in integral equation form, because either ¢ or V¢ is involved
in the surface integral term. Thus, strictly speeking, the differential

squation hes not been sclved but just transformed to integrel egquation form.

8%nis follows directly from the first and second boundary valus
problems of potential theory (Dirichlet and Neumenn problems). See



2. Two-dimensionsl case

The solution of the two~dimensional form of Poisson's equation is not
guite as well known as the three dimensionsl one, so it will be derived.
It is the form directly appliceble to the wave guide problems of interest,
Consider Green's formula as applied to the volume between the smell cy-
lindrical surface ZZI and the outer surface £  and of unit length as

shown in Fig, 3. Green's formula states that

favry -y =) Lo :f(¢v¢~%<f¢)-d’3 (239)
v’ Sl

where V'~ is the volume between = and S and ,5 4is the surface

enclosing this volume.

Fig. 3 Section of Guide of Unit Length

Now let

< = potential function of interest
Y a - luy
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where |~ is the distance from the line at (%,4) to any point within v’
Then if

V% =-p
and

Vi = 0o,

Green's formulae becomes

vl
(140)
_'.

fa(o,ﬁnra(lr':f[qbv(—,éwr}—l—,&«rv¢]-o(5
=
¢ 0 CAr) + har |- fs
Zl
Hote that the integral over the end pieces is gero because there is no
variation in the longitudinal direction. The latter term of (140) can be
evalusted if the radius of the surface Zi’ is assumed amall., Letting the
radius be 9 s and remembering a(g is directed inward in thie case, the

terms of the integral reduce to

[t terr- i “j"’(‘-’ﬁfr'[s ~ ¢Lors = 2
P b3

Lur 9 - ds = ]V‘émw.I Lo S| [airs| ——0 @ §— 0.
= e S
One has only to write (/(,. S )(2/75) in the form ~ 7 and differ-
2r s

entiate numerator and denominator to see that this will approach tero as

S approaches zero. Thus <~ c¢an now be written as

L _ (141)
PO = 50| = Loer Lo -z’—,r][w(w«rwﬁqub} o
£

VI
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As the section considered is of unit length and there ig nc variation in
the '3 direction, the volume and surface integrals of (141) can be replaced

with surface and line integrals respectively. The resulting expression for

35 is

27

L L5 + - .
Py = -+ UJP oo {(vcﬁﬂur ¢vlar) aéé] (1e2)

where L/ indicates the differential slement of contour C with a vector
sense normal to C and directed outward, and .S° 1is the cross-sectional
area of the guide. Thus, (142) is the two dimensionsl counterpart of (136),

and the same electrostatic interpretation of each of the terms applies here

also.

3. Modificetion of the iterative procedure

Returning to the original problem, the iterative process for solving

the wave guide problem involves solving the equation

VP = — N\ (143)

where V> is the twoe-dimensional Laplacian operator., Using (142) the

“n
expression for ¢© can be written as

<¢%:“§4ﬁy¢%uhrdsf/&¢@%r—¢mwhdwﬁu“
s fa g

It has been shown previously that the <b' obtained by this procedure will
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converge to the lowest order eigenfunction eontained in qbo . However,

qbat cannot be obtained directly from (144) becmuse it appears within the
line integrel term. For lerge ¢ , though, &~ @™ and A = A
This leads one to wonder if it might not be possible to use ¢¢ *' in
the line integral term rather than ¢ . After all, ¢ = is only an ap-
proximation to the eigenfunction of the problem. Replacing ¢ with

@™’ in (144) will not lead to the same ¢ as given in the original
squation, but the difference should become smeller snd smaller as . 7u
beeomes large, providing, of course, that the procedure converges, As the
two methods are similar for large v , the same srguments regarding speed
of eonvergence and degeneracy previously discussed should carry over
direetly.

The sdventage of this modification should be obvious. One hae only
to evaluate integrals of known functions this way, whereas in the original
achéme, an integrel equation had to be solved with each step. Showing that
this modified procedure will converge is not a simple matter, and nothing
general was developed along this line, As a poor substitute the method was
tried on a rectangular wave guide exemple and it seemed to converge as

expected, This exemple, along with the details of the method, follows in

the next section,
B, Reetangular Wave Guide Example

Examples which are not completely triviel, and yet simple enough to

work with just the aid of s slide rule and desk c¢alculator, are not very
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numerous. The problem finally chosen was that of the TM mode case for a
square wave gulde, This problem has snough symmetry to be workable with
e reasonable smount of effort, and yet is extreme in the sense that the
bounding curve hag sharp corners, These advantages, slong with the fact
that sn exset solution is available for comparison, meke it an ideal
exemple for experimenting with the modified method.

For the TM case <> (which is being used in place of E} ) must be

gero on the boundery. Thus (144) reduces to

i 4

p :____11}{/\“’[(;5’":'5",/0(5 +f(v¢’"/5nr1' GZZ ]
Y C

= - f—‘; [‘jscp"”",énmés «[39;1 (%:),/u.r /ou'/] (145)

where 2%{ refers to the normal derivative directed inward. The terms
have been grouped in such & way that )\/n can be factored out in front of

»
the whole expression. At this point % in the line integral term of
Ky

(145) will be replaced with AT giving for the finel recursion formula
%/\, —_ _Z\_/_.n ety 2 ¢”!‘/
P = 2”.[_445 /&1/”6(5“63_,1{77.:,/«&”4’ Io(l/] (146)

M,
where ﬂ will be chosen such ag to normalize the resulting ¢mas before,
For computational purposes the region S was divided into 100 incree
mentel sguares, This seemed to be a reasonable compromise between the

desired accuracy and the amount of work involved. The purpose of the
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exanple was not to find & precise solution to the problem, but rather to
get some idea as to whether or not the process would ccnverge, As a
matter of convenience the incremental ares was chosen to be unity and thus
making the whole square 10 by 10 units. Due to symmetry the value of qbnm
had to be determined only in the 15 squares shown numbered in Fig. 4. For

identification purposes each square was numbered beginning with one in the

upper left corner.

12 {13745

23 |24125

34|35
45

Fig., 4 Numwbering Scheme for Incremental Squares

In order to simplify the calculations the function wes assumed to be
constant throughout each interval, and center to center distances were used
in the " " terms. This is the equivalent of saying that the effect of
the distributed charge within the boundary can be replaced with 100 fine

lines of charge, one et the center of each unit square, and that the in-
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duced charge cen be replaced with forty fine lines distributed at unit
intervals slong the bounding eurve (_ , There were two exceptions to
this rule, however., In computing the component of potential at a point due
to charge within that same region, obviously another eapprosch must be used.
It was declded to consider the equivalent effect of a circular region of
unit area which can be computed readily. Also, in finding the effect of
the induced cherge on the boundary on the potential in an adjacent square,
0.6 unit was thought to be e better approximation than 0.5 for the equiva-
lent distance from cne side to the center of the square,

A pyramid shaped function with its peak at the center of the square
was chosen for {he initial <750 funetion. This was a convenient function
to begin with because it can be normalized easily and has constant slope

everywhere along the edge which makes the induced effects easy to compute.

In ao

could be evaluated. This involved a little thought. If one expects the

Pe) (]
In addition a value for /\ had to be asgumed before the 2 ( ¢ } term

!
resultant potential function ﬁb to be mpproximetely zero on the boundary,
there should be about as muech induced charge on the boundary as distributed
[
charge within the region. Thus one eriterion for choosing )\ would be to

make it such that the sum of ell the 950065 terme will equal the sum of the
¢V
%(7" /”(‘(/ terms., This eriterion would be worthless, howsver, in

evaluating some of the higher crder modes where the total induced charge is
Zero.,

[
Another way to choose )\ would be to use the spproximate eigenvalue
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corresponding to <©° as given by the Ritz method. It can be shown that
the present problem cen be formulated in a variational way, and one of the

results is thet the eigenvalue f\ is the minimum of the function
f [ (%i )L—i— ( %?JLJ A5 , subject to the normelizing constraint on
S

& that®

jc#is—_:/‘
o

Thus an approximste value of A may be sssociated with each approximate
eigenfunction in accordance with this surface integral. For example the

A corresponding to ®° would be given by
° _ P’y * Py AR Y
Ve L) g s

o
and for the particular ¢O chosen for this example A works out to be
0.240, This velus alsc makes the total indueced charge approximately equal
to the charge within ,5 , 80 it was used for the initial value of A .

The correct normalised solution for the problem is

~

mx ' (148)

o

~
V)
Y

and the corresponding eigenvalue is é{% or about 0.197. This solution may

be verified by referring to any standard text on wave guide theory.

83ee Weinstock (15) p. 164.
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The iterative process was carried through two steps, and the results
are tabulated in Table 2., The correct values listed in the table were
computed from (148). Only the velues for the 15 squares noted in Fig. 4

ere given, as the others can be obtained from the symmetry of the problem,

Table 2. Results of Twe Iterutive Stepe

Coordinate” P’ P’ ¢ Correct Velue
1 . 024 o] 004 L] 000 . 005
2 024 .016 .01 014
3 024 027 .028 .022
4 024 - 040 .03b .028
6 024 048 .038 081

12 074 »041 041 041
13 074 064 066 064
14 074 084 .083 .081
15 074 +083 .096 .090
23 .123 .101 +101 «100
24 «128 124 .122 126
25 »123 .138 »140 140
34 172 .166 1867 .169
36 172 172 174 .178
45 222 «181 .192 +186

*Numbering scheme for incremental squares is given
in Fig. 4.

Table 3 shows the approximate eigenvalues obtained with sach step and the
correct value for comparison., Note that /\L is within about 2.5 per cent
of the correct value, which is, perhapa, about as close as might be expected

for the rather coarse ineremental method used.
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Table 3. Successive Approximations for A

o

AQOC..'*QQ 0'240
ﬂ 0.184
Z

A » * L] * * - L ] * * 0.193
A (correct) . . . . 0.197

The final results for ¢©° are also shown graphicslly in Fig. § along
with the initial ¢’ ocurves., The solid curves show the value of the
function P° for five ecrosssectional cuts, one through each tier be-
ginning with the outside row of squares. The dotted curves represent the
correasponding initiel @’ function. In both cases curves are plotted
only for cne quadrant of the square because of the symmetry. It can be
seen that after two iterative steps the curves are beginning to look like

sine funoctions,
C. Conclusions and Extension to cavitj Problem

One cannot conclude anything very general just on the basis of the
resultes of one example. However, it certainly appears that the technique
could be applied to other similar problems with the homogeneous boundary
condition on ¢© . Nor does there appear to be any reason why the method

should not work just as well for the zero normal derivative boumdary conw
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Fig. 5 Cross Sections of ¢ and %,
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dition case. Using the modified version is not quite as routine as the
original scheme though, as one must use & little judgement in choosing the
proper combination of slope and A in the first few steps in order to make
the induced and direct charge terms sum to zero. For example in the pre-
ceding problem the slope of CP’ wae difficult to detormine because of the
goarse resolution, and so the zero total charge criterion wes used to help
determine the slope of < .

Finding the higher order solutions might prove to be difficult using
this modified epproach. It will be recalled that in the original scheme,
absence of any particular mode in the initial ¢0 also insured the absence
of that mode in each of the successive approximationsz, Thus one could obe
tain the second order molution, say, by using en initial function not con-
taining the fundemental. However, this is not go with the modified version
of the method. The fundsmental might show up in <75' even though not
present in cf>o because of the approximations made in the equation for ¢>/ .
It would appear that the only way to insure convergence on the second order
solution would be to remove the fundamental component from each successive
approximation. This could be done, in principle at least, if the funda-
mental were known, but it would involve & considerable amount of work.

With regard to extending the method to the resonant ocavity problem, it

can be shown thet the vector eguation

YXVX A :/‘-3: (149)

cen be integrated (in the same sense of the word as in the case of Poisson's
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equation), and the result is®

e T Ak (I<A
A%ef:;s):iv[ It {"‘ff s

v

feanA)x v d —f(ﬁ.g)q(—’;)ols]
) |

/s - (150)

Here again /A has not been solved for explicitly but is merely givenm in
integrel equation form. In the cavity problem the recursion formula en-

countered 15"

Uxyx £" = A ETT (161)

and the solution for £ ™ msy be written using (150). Here, as before,
E>"~E™ ad N = 2"

’ for large < . Thus one might think
that there is a possibllity of doing something similar here to that of the
previous case, No attempt was made to work any exsmples along this line,

80 this is merely suggested as a posaibility.

Bs5ee Stratton (13) p. 250.

— M Z 7~
*As long as £ ' is solenoidsl, VXV X E "=-V E .
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